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Motivation
The	recent	advance	in	single-cell	transcriptomics	has	enabled	the	study	of	cellular
communication,	a	complex	multicellular	mechanism	that	governs	many	biological	processes.
Several	computational	tools	have	been	proposed	to	infer	ligand-receptor	interactions	from
single-cell	RNA	sequencing	(scRNA-seq)	data,	but	very	few	of	them	also	investigate	and	quantify
the	downstream	intracellular	signaling	and	identify	differences	in	communication	across	distinct
experimental	contexts	(1,2).	Moreover,	as	scRNA-seq	has	become	cheaper,	widespread	and
accessible,	the	availability	of	large-scale	studies	and	cell	atlases	of	growing	complexity
(different	conditions	and/or	subjects	and	time	series	studies)	has	been	increased,	posing	the
challenges	of	computational	demand,	visualization	and	interpretation	of	cell-cell	communication
analysis.	
Therefore,	there	is	the	need	of	a	generalizable	and	scalable	workflow	to	perform	and	support
the	interpretation	of	cellular	communication	analysis	from	large-scale	scRNA-seq	data	in	a	user-
friendly,	efficient,	and	effective	way.	For	this	reason,	we	developed	CClens,	a	bioinformatics
pipeline	that	allows	to	i)	quantify	and	characterize	cell-cell	communication	in	distinct	contexts
(i.e.	multiple	experimental	condition	or	multiple	patient	scenarios)	at	both	inter-	and	intra-
cellular	level;	ii)	infer	differential	cellular	crosstalk	across	contexts	through	statistical	methods;
iii)	perform	fast	and	memory-efficient	analysis	of	complex	and	multi-gigabyte	dataset	exploiting
cross-language	interoperability	(i.e.	R	and	C++);	iv)	support	interpretation	and	exploration	of
cell-cell	communication	data	through	an	interactive	and	user-friendly	interface.
Methods
The	method	requires	as	input	a	scRNA-seq	normalized	gene	expression	matrix,	cell	cluster
assignment	(i.e.	cell	type	annotation)	and,	if	available,	data	about	samples	and/or	patients	(i.e.
multi-condition	and/or	multi-patient	scenario,	respectively).	To	quantify	cellular	communication
in	each	scenario,	users	can	choose	their	preferred	intercellular	scoring	scheme	among
scSeqComm,	SingleCellSignalR,	Zhou	and	Skelly	score	(3–6).	scSeqComm	intracellular	score,
the	only	available	score	to	the	best	of	our	knowledge,	is	implemented	to	characterize	the	effect
of	intracellular	signaling	in	terms	of:	i)	association	between	receptors	and	transcription	factors
(TF)	based	on	Personalized	PageRank	algorithm	applied	to	biological	pathways;	ii)	activity	of
TFs	based	on	the	expression	levels	of	their	target	genes.
Significant	differential	intercellular	communication	is	assessed	using	a	permutation	test	in
multi-condition	scenario,	by	randomly	shuffling	the	experimental	label	of	each	cell	to	obtain	the
null	hypothesis,	or,	in	case	of	multiple	patient’s	data,	using	Wilcoxon	Mann-Whitney	test	on
patient-specific	scores.	Differential	intracellular	crosstalk	is	assessed	by	measuring,	in	each
pathway,	differentially	expressed	TF’s	target	genes,	exploiting	already	existing	approaches	(e.g.
MAST	or	pseudobulk	approach	(7,8)).	
To	handle	the	increased	computational	burden	of	the	analysis,	the	proposed	method	implements
in-memory	computation	through	the	bigmemory	R	package	(9)	and	exploits	C++	efficiency
through	the	library	Rcpp	(10).	The	shared-memory	framework	from	the	bigmemory	package	and
its	interface	with	R	and	C++	through	Rcpp	allow	a	very	effective	use	of	the	memory	and	enable
shared-memory	parallelism	to	improve	speed.
Moreover,	an	interactive	R/shiny	platform	assists	user	in	the	interpretation	and	exploration	of
multi-dimensional	cell-cell	communication	data.	It	includes	i)	multiple	filtering	options	to
dynamically	and	interactively	inspect	data,	ii)	a	powerful	and	effective	visualization	framework
for	summarizing	and	interpreting	communication	data,	and	iii)	advanced	visualization	tools	to
analyse	multi-condition	and	multi-patient	datasets	on	all	their	dimensions	(e.g.	inter-	and	intra-
cellular	signaling).
Results
To	appreciate	the	various	facets	of	the	method,	we	applied	it	to	a	large	publicly	available
(GSE174332)	single-nucleus	dataset	of	human	primary	motor	cortex	(~242,000	nuclei)	from	a
cohort	of	23	amyotrophic	lateral	sclerosis	and	17	pathologically	normal	patients	(11).	The	use	of
the	R/shiny	app	enables	the	characterization	of	cellular	crosstalk	in	each	distinct	condition	(or
patient),	and	quantitative	and	qualitative	comparison	of	communication	patterns,	revealing
alterations	which	might	be	associated	to	neurodegeneration.
Moreover,	the	efficient	in-memory	implementation	and	the	shared-memory	parallelism	allow	to
process	dataset	as	big	as	entire	cells	atlas,	i.e.	matrixes	that	cannot	even	be	represented	with
vanilla	R	matrix	due	to	R	memory	limit.	For	example,	we	successfully	perform	differential
cellular	communication	analysis	of	“LUCA	Single-cell	Lung	Cancer	Atlas”	(12)	(a	cell	atlas
comprising	~900k	cells	from	318	patients	with	14	distinct	cell	types)	with	relative	low	execution
time	and	small	memory	footprint	(~200	minutes	and	~110	GB	with	4	cores	@2.1	GHz).
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