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Motivation
Single-cell RNA sequencing (scRNA-seq) is transforming our understanding of de-
velopmental biology and gene regulation [1, 2], although substantial computational
obstacles remain. In particular, integrated analysis of different scRNA-seq datasets,
comparison of multiple cell populations and subpopulations and the integration
of measurements and parameters still remains challenging. Thus, new datasets are
needed to enable the application of new computational methods [3, 4] and to facil-
itate comparative analysis in order to guide future experimental and data-analysis
settings towards gold standard procedures and pipelines. The aim of this study was
to apply scRNA-seq on different cell populations from in-vivo, in-vitro and clini-
cal samples in order to define experimental and data analysis guidelines to obtain
good qualitative, quantitative, and reproducible single cell RNA sequencing data
from different cell types.
Methods
scRNA-seq has been performed by using the 10x Genomics Chromium Single-cell
system and the Single Cell 3’ library preparation protocol on 8 different cell pop-
ulations: CD8 naïve T cells isolated from healthy donors’ peripheral blood, pri-
mary culture of hippocampal neurons established from E18 mouse embryos at 5
days of in vitro development, single cell suspension derived from dissociated so-
matosensory areas of the murine cerebral cortex at birth (P0), non-cardiomyocyte
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cells from wild-type mice hearts, human Endothelial colony-forming cells (ECFCs)
isolated from peripheral blood of adult healthy controls, tumor cells from a hu-
man intrahepatic cholangiocarcinoma cell line (HUCCT1), cardiomyocytes derived
from human induced pluripotent stem cells (iPSCs), CD45+ immune cells FACS-
sorted from human glioblastoma tumoral tissue; prostate-derived cells from hu-
man semen. After library preparation samples have been sequenced on an Illumina
NextSeq 500 sequencer generating 26bp reads for 10x barcodes and UMI sequenc-
ing and 98 bp reads for transcript insert sequencing. We used Cell Ranger version
2.1 (10x Genomics) to process raw sequencing data and the Seurat suite version
2.0.0 [3, 4] for downstream analysis. For clustering, we first reduced dimensionality
by principal-component analysis (PCA). We selected variable numbers of princi-
pal components (PCs) using either a permutation-based test or heuristic methods
implemented in Seurat and performed clustering using methods implemented in
Seurat.
Results
In total 20 samples have been sequenced at single-cell level by obtaining on aver-
age 100 million reads per sample, more than 70% of the samples showed a perfect
single-cell behavior having more than 70% of the reads assigned to single cells af-
ter Cell Ranger demultiplexing step. We observed a cell viability reduction mostly
related to the time occurred from sample sorting and loading into the Chromium
single cell system, thus mostly evident in in-vivo and clinical samples. On aver-
age 4250 single cells have been recovered from each sample and a median number
of detected genes per cell of 1770 has been obtained. The sequencing saturation
was inversely proportional to the number of cells loaded into the Chromium and
to the level of transcription characterizing different cell types. Different biological
replicates of the same samples were analyzed, and different number of the same
cell populations have been loaded in the system in order to perform a titration ex-
periment and obtain an estimation of the sensitivity of the system respect both to
the identification of different cell subpopulations and to the reproducibility of the
results. We observed a good level of correlation between the abundance of cell sub-
populations (R2= 0.76) when we loaded into the system 3000 and 1500 cells of the
same biological samples. Moreover, the average gene expression level in the same
cell subpopulations identified through the tSNE clustering strongly correlated (R2=
0.81), irrespectively of the number of cells loaded. Then we compared those sam-
ples showing the same level of sequencing saturation in order to derive from the
scRNA-seq data an indication about the level of transcription of the different cell
types, thus showing that the median number of detected genes per cell inversely
correlated with the transcriptional behavior of the cells. We then focused our at-
tention on a subset of samples in which we compared the same cell sample in two
different conditions and by applying Seurat algorithm we were able to identify con-
served cell types across conditions, allowing for comparative analysis to identify
shifts in cell type proportion, as well as cell-type-specific transcriptional responses
to different conditions. Results of this study will be useful to the scientific commu-
nity interested in applying scRNA-seq technology to analyze different types of cells
to correctly design future experiments and to obtain reliable and reproducible data.
References
1. Johnson, M.B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human

2



cortex. Nat. Neurosci. 18, 1–30 (2015).

2. DeLaughter, D.M. et al. Single-cell resolution of temporal gene expression during heart development. Dev.

Cell 39, 480–490 (2016).

3. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across differ-

ent conditions, technologies, and species. NatBiotechnol. 2018 Apr 2.

4. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck

EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly Parallel Genome-wide Expres-

sion Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015 May 21; 161(5):1202-1214.

3


