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Motivation

The continuous improvement of high throughput DNA sequencing techniques has enhanced the possibility
of studying complex microbial systems. Mining microbiome data, however, requires the development of
specific computational methods to extract the information useful for analysing the micro-world of interest. 
Differential Abundance (DA) analysis in microbiome dataset is now a standard step in downstream analysis
[1], focusing on the identification of specific taxonomic features (taxa) that significantly drive differences in
microbial composition between experimental groups. 
Methods adapted from the RNA-sequencing field were initially used for this type of investigation.
Microbiome data show peculiar characteristics, both biological and technical, which motivated the
development of new tools based on the compositional approach [2-6].
Despite several studies compare the performance of the DA methods [5, 7-9], there is a lack of
investigation on the most recently developed approaches. 
Here we exploit a generative model of microbiome synthetic data that takes into account its compositional
nature and simulate different scenarios by combining all the possible covariates of interest while
maintaining the main characteristics of the datasets, as an ultimate test-bed for the DA methods.

Methods

In this study we focus on established and recent DA methods developed for microbiome analyses (i.e.,
ALDEx2 [10], eBay [11], ANCOM [12], ANCOM-BC [13], corncob [14], metagenomeSeq [15]) and for
differential expression analysis of RNA-seq data (i.e. edgeR [16] and DESeq2[17]). 
As a benchmark to assess methods’ performance we use simulated data generated by metaSPARSim
[18], a recently published simulator able to resemble 16S sequencing data and estimate simulation
parameters from real datasets. We simulate microbial count data starting from three real datasets [19-21]
characterized by different library size, sequencing technology used, sparsity and amplified hypervariable
regions, obtaining a wide range of scenarios. For each simulation, we generated differentially abundant
taxa in groups of samples introducing a taxa fold change (FC) varying it in a predefined interval.
metaSPARSim simulation procedure preserves the mean–dispersion relationship learned from real
scenarios, thus preventing the risk of creating unrealistic abundance distributions.
For consistency with previous comparison [5, 7-9], for each simulated dataset we firstly investigate the
effects of three covariates: percentage of DA taxa (5%, 10% and 20%), number of samples in the
experimental groups (10, 25, 50 and 100) and library size (half or double of the original). In addition, since
at low abundance DA features detection is a difficult task and large biological variability may affect method
performance, we also assess methods' results by simulating more/fewer DA features in the low abundance
range and changing taxa variability level.
For each dataset and covariate, we first evaluate tools performance in terms of false positive rate (FPR)
control under the null hypothesis (i.e., without DA features). Then, recall and FDR are investigated along
with their trade-off considered in the PR-curve and the area under PR-curve (AUPR). Information about
running times completes the performance overview since computational time can play a key role in method
choice (e.g., for large datasets).

Results

The literature reports that methods tend to have high FPR and, therefore, the FDR value higher than the
desired threshold (namely 5%). However, in our study ALDEx2, eBay, ANCOM, and ANCOM-BC (followed
by corncob and the baseline method Wilcox) do not follow this behaviour. Even at low sample size
ALDEx2, eBay corncob and Wilcox, tends to stay below 5%. The proper control of FPR is maintained even
when the DA features are simulated at low abundance. In addition, we verify that methods’ performance
tends to be robust to the library size parameter. 
Unsurprisingly, recall is particularly influenced by the sample size. In scenarios with many low abundance
features, many samples are needed to overcome 50% of recall. As expected, in the presence of low
abundance DA features all methods reveal a noticeable decrease in power. In general, when the number of
samples increase edgeR, DEseq, corncob and eBay reach a recall close to 75%. 



samples increase edgeR, DEseq, corncob and eBay reach a recall close to 75%. 
Again expectedly, the variability simulation parameter significantly impacts the recall, but not the overall
observed ranking of methods in methods performance. 
Finally, all methods have low computational times, although corncob and ANCOM show a longer execution
time as the sample size increases.
Despite there is no method that outperform the other in all the scenarios and covariates, compositional
approaches exploited in ANCOM, ANCOM-BC, eBay, ALDEx2 achieve a good trade-off between precision
and recall.
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