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diagnostic signatures
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Motivation

Several studies have investigated the link between the gut microbiome and colorec-
tal cancer (CRC), and microbial biomarkers constituting a hypothetical diagnostic
signature have been identified. However, these studies have been limited by sam-
ple size or used microbiome tools with a limited taxonomic resolution. Moreover,
the transferability of such microbiome signatures across cohorts, populations, and
other confounding factors have not been comprehensively assessed so far.
Methods

We used whole metagenome sequencing to uniformly quantify taxonomic and func-
tional abundance in fecal metagenomes from 140 participants recruited in two Ital-



ian cohorts along with all 5 available CRC metagenomic datasets, totaling 352 car-
cinomas and 312 controls. Our analyses exploited 4 types of microbiome quanti-
tative profiles: taxonomic species-level relative abundances and marker presence
or absence patterns inferred by MetaPhlAn2, gene-family, and microbial pathway
relative abundances estimated by HUMAnNZ2. Univariate analyses on a per dataset
basis was performed using LEfSe to identify features that were statistically different
among groups and estimate their effect size. We applied arcsine-square root trans-
formation on the functional and taxonomic relative abundances. We then used
the escalc function from the R metafor package that employes Cohen’s standard-
ized mean difference statistic to build a random effects model. Predictive machine
learning experiments were performed using Random Forest (RF) on distinct learn-
ing tasks. Specifically, we measured the inside-dataset prediction capability of the
microbiome using 10 fold cross validations. Cross-cohort training-validation pre-
dictions were performed on all possible pairs of distinct datasets. A meta-cohort
approach was then applied on all datasets except the one used for training (Leave-
One-Dataset-Out - LODO - approach) to test the generalizability of multi-cohort
models. We also performed experiments at increasingly larger subsets of samples
and features (using RF feature selection) to assess the impact of training set size
and identify minimal predictive microbial signature.

Results

Our meta-analysis considered stool metagenomes from 352 CRC patients and 312
controls. We first sought robust taxonomic and functional biomarkers for CRC,
identifying a panel of confirmed over-represented species including Fusobacterium
nucleatum, Parvimonas, and Peptostreptococcus stomatis, and newly strongly as-
sociated species such as Streptococcus tigurinus, Streptococcus dysgalactiae, and
3 Campylobacter species (A). Functional potential analysis identified gluconeoge-
nesis and the putrefaction and fermentation pathways to be associated with CRC,
whereas the stachyose and starch degradation pathways were associated with con-
trols (B). When we assessed the diagnostic potential of the CRC microbiome, we
found that the within cohort cross-validation performances were higher than cross-
cohort predictions that were ranging from AUC 0.55 to AUC 0.84 (C). Models trained
on the combination of multiple datasets showed on the contrary consistent and
high performances on distinct cohorts (avg AUC 0.81, D). Different feature types
(markers, gene families) gave similar results (avg AUC 0.80, 0.79, D). Progressively
increasing the number of training cohorts gives monotonically improving scores for
the newly sequenced cohorts (E). RF features selection highlighted that almost op-
timal performance is achieved using a panel of only 16 species, with a 1% improve-
ment in the mean AUC value when all the species are considered (F). Altogether,
our results highlight the very high clinical predictive potential of the microbiome
in CRC. Moreover, we point out that heterogeneity of the meta-cohort and sample
size are key factors in the accuracy of the predictive models, and thus motivate the
need for sequencing additional CRC-associated cohorts to further refine biomarker
discovery and metagenomics-based diagnostic tools.
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Eigure 1 - Reproducible taxonomic and functional microbial signatures for CRC across datasets. (A) Pooled
effect sizes for the 20 significant features with the largest effect size calculated using a meta-analysis of
standardized mean differences and a random effects model on MetaPhlAn2 species abundances and on (B)
HUMANRZ2 pathway abundances. Bold lines represent the 95% confidence interval for the random effects
model coefficient estimate (marked with a black circle). (C) Cross prediction matrix reporting prediction
performances as AUC values obtained using a random forest (RF) model on species-level relative
abundances. Values on the diagonal refer to 20 times repeated 10-fold stratified cross validations. Off-diagonal
values refer to the AUC values obtained by training the classifier on the dataset of the corresponding row and
applying it on the dataset of the corresponding column. The Leave-One-Dataset-Out (LODO) rows (D) refer to
the performances obtained by training the model on the species-level abundances, MetaPhlAn2 markers
presence-absence, HUMANNZ UniProt90 gene-families and functional pathways abundances, using all but the
dataset of the corresponding column and applying it on the dataset of the corresponding column. (E) Prediction
performances for the two Italian cohorts at increasing numbers of external datasets considered for training the
model. The dark yellow line interpolates the median AUC at each number of training datasets considered. (F
Prediction performances at increasing number of microbial species obtained by re-training the RF classifier on
the N top ranked features identified with a first RF model training in cross-validation and LODO-setting.




